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1 Introduction

From time to time a significant number of banks fail and asset markets crash simultaneously. Such
financial crisis can be caused by changes in fundamentals hitting a financial system which reacts
heavily. Another possibility is that a crisis originates in the financial system without changes in
fundamentals. In that scenario, what are the real economic implications of the crisis?

In the present paper we study economies with no intrinsic uncertainty where banks make pro-
ductive investments, provide liquidity insurance and interact on asset markets. There is extrinsic
uncertainty in that depositors can fail to coordinate. Indeed depositors can engage in bank runs that
can lead to bank failures and asset market crashes. For banks to be immune to bank runs they need
to follow strategies that enable them to satisfy demands of depositors regardless whether depositors
run or not. Financial systems are described along two dimensions, namely the share of banks prone
to bank runs and the volatility of asset prices. For the two extremes, financial systems are stable pro-
vided no bank is prone to bank runs and asset prices are constant and unstable provided all banks are
prone to bank runs and asset prices are volatile. Financial systems are weak provided they are not sta-
ble. An economy can have multiple financial systems or there is even indeterminacy. For economies
with multiple financial systems, one can be stable, one unstable and others weak. For economies with
indeterminacy, the financial systems can consist only of banks which are immune to bank runs while
asset price volatility is indeterminate.

Our starting point is a variation of the Diamond and Dybvig (1983) model as in Allen and Gale
(2004a,b). There are three dates and a continuum of ex-ante identical consumers, who live for two
or three dates. Every consumer has one unit of a good and is able to store it between dates. Banks
can make productive investments and hold reserves by storing goods. Productive investments involve
an investment at the first date and generate an output at the final date. Banks provide liquidity insur-
ance by offering simple deposit contracts according to which consumers can withdraw their deposits
whenever they want, but the rate of return can depend on the date of withdrawal. Banks can trade
productive investments at the second date.

We differ from Allen and Gale (2004a,b) in that deposit contracts make banks susceptible to
bank runs even though there is no intrinsic uncertainty. Suppose banks cannot satisfy demands of all
depositors in case they run at the second date. Then coordination failures are possible: if all depositors
believe all other depositors will run, then they will run themselves. For banks to be immune to bank
runs they need to ensure their portfolio is always liquid and they do so by extending their reserve ratio.
These banks are safe. Banks prone to bank runs are risky banks. For them the upside is that they do
not need to make sure their portfolio is as liquid. The downside is that the return to depositors is
limited in case they run. We consider two extrinsic states. In the first state all depositors run provided
their banks cannot satisfy the demands of all depositors in full at the second date. In the second state
nobody runs.
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In equilibrium banks offer deposit contracts and consumers choose where to make deposits. The
banking sector is perfectly competitive. Therefore every bank offers a contract that maximizes ex-
pected utility of consumers and every consumer makes a deposit in the bank she prefers. Should banks
offering different contracts coexist, then consumers are to be indifferent between these contracts even
though some can be immune to bank runs and others are run-prone. Since portfolio decisions are
made before the extrinsic states are know, aggregate availability of reserves in those states is inelas-
tic, implying cash-in-the-market pricing and asset prices being potentially different across states. We
carry out a detailed study of equilibria. They are shown to exist (Theorem 1). While the proof does
not tell anything about their properties, there can be only three types of equilibria: solely safe banks
operate so asset prices ensure that banks do not want to buy assets; solely risky banks operate so asset
prices have to ensure that risky banks do not want to sell assets; and, there are both risky and safe
banks so asset prices ensure asset supply of risky banks is equal to asset demand of safe banks.

We show that if the probability of coordination failures is sufficiently small, there may be only
risky banks and the asset price drops to or below the physical liquidation value of assets when bank
runs occur (Theorem 2). If the probability of coordination failures is sufficiently large, there may
be only safe banks and equilibrium asset prices are deterministic (Theorem 3). If a stable financial
system exists where safe banks strongly dominate risky banks, there is indeterminacy because such
equilibrium is not locally isolated (Theorem 4).

Some simple examples show that there can also be multiple, locally-isolated equilibria. For in-
stance, economies can have weak financial systems and stable financial systems, or unstable financial
systems can exist along with stable financial systems. We take such economies with multiple equilib-
ria as a starting point to study the real economic implications of financial instability. The advantage of
this approach is that we compare economies with the same fundamentals and the same probability of
coordination failures and the only difference is the endogenous instability of their financial systems.
Therefore, any differences in the real outcomes can be attributed solely to the difference in financial
instability. Our approach does thus not simply look how financial systems dampen or amplify shocks
to fundamentals, or how strong the backlash in the real economy is once a financial crisis occurs, or
how the allocation of funds is distorted in anticipation of crises — for those differences could be in
principle attributed to differences in the primitives that give rise to different financial systems in the
first place. The model suggests that equilibria differ according to the value of the liquidity insurance
consumers obtain. They also differ with respect to how funds are allocated across liquid reserves and
illiquid productive capital investments. For non-increasing relative risk aversion we find that among
the financial systems that can emerge, the value of liquidity insurance and the share of savings going
into productive investments are both the larger the higher is the asset price in the crisis state (Theo-
rem 5). We provide an example of an overlapping generations economy with production which can
grow stronger with a stable financial system than with a banking sector consisting of both risky and
safe banks.
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The idea of sunspots affecting real outcomes goes back to Cass and Shell (1983). That bank
runs can be triggered by sunspots has been first suggested by Diamond and Dybvig (1983) and then
scrutinized in-depth from a mechanism design perspective (e.g. Jacklin, 1987; Green and Lin, 2003).
We restrict attention to simple deposit contracts, but according to Peck and Shell (2003) and Sultanum
(2014) even an optimal contract implies the possibility of a bank run driven by coordination failures.

There is a large literature on the interactions of asset markets and liquidity-providing banks. There,
crises are often treated as zero probability events (e.g. Fecht, 2004) or the level of liquidity held by
banks is exogenous (e.g. Brunnermeier and Pedersen, 2005; Diamond and Rajan, 2005). Allen and
Gale (2004a,b) analyze economies with positive crisis probabilities and endogenous liquidity hold-
ings by banks. There, bank failures only occur when shocks to fundamentals drive the market value
of a bank’s assets below the present value of its promised payments to depositors. There are no co-
ordination failures. Bank runs are thus primarily solvency rather than liquidity problems, which is
our focus. An important insight from Allen and Gale (2004a) is that fundamental shocks can have
disproportionately large effects on banks and asset prices. However, in the limit economy where fun-
damentals become asymptotically deterministic, the equilibrium converges to one in which banks will
never default and provide an unconstrained efficient liquidity insurance. Accordingly, while the finan-
cial system has a tendency to react strongly to real shocks, infinitesimal shocks have no real economic
implications. We consider the case of asymptotically deterministic fundamentals as the starting point
for our analysis. For example, one could think of our extrinsic risk as some fundamental with values
that differ only to some infinitesimal extent in two states. The possibility of coordination failures
imposes a tighter constraint on banks to be safe than in Allen and Gale (2004a). This prevents safe
banks from providing optimal liquidity insurance even in absence of fundamental risks. Therefore,
any financial system with at least some banks being safe deviates from optimum liquidity insurance.
Risky banks choose not to be subject to such additional constraint. Accordingly, only unstable fi-
nancial systems offer liquidity insurance that converges to the first-best provided the probability of
sunspots approaches zero. Moreover, despite there being no fundamental risk, there can be multiple
equilibria and even indeterminacy in real terms.

Bencivenga and Smith (1991), Ennis and Keister (2003) and Fecht et al. (2008) analyze the role
of banks providing liquidity insurance for capital formation and growth. In Bencivenga and Smith
(1991) there are no bank runs and no asset markets. In Ennis and Keister (2003) and Fecht et al.
(2008) banks as well as some consumers can trade on asset markets but equilibria are symmetric.
Ennis and Keister (2003) allow for coordination failures, but bank runs inevitably lead to physical
liquidation of capital since the set of equilibria is restricted to symmetric equilibria, rendering asset
prices deterministic. In our paper, asset markets can prevent inefficient liquidation. In all but unstable
financial systems, productive assets originated by banks will change hands in the course of a banking
crisis. This is because of two features of such financial systems. First, there are some safe banks,
which by their very nature hold excess reserves. Second, asset prices clear the market in all states.
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Therefore, while the possibility of a crisis and its expected intensity affect the ex-ante allocation of
resources and thus impose an externality on future generations of consumers, the actual occurrence of
a crisis does not. Only with an unstable financial system there will be no buyers of assets in the market
and the actual occurrence of a financial crisis itself imposes an externality on future generations. In
Fecht et al. (2008) there are neither extrinsic nor intrinsic risks. Their focus is on the role of the direct
participation of consumers in asset markets for the trade-off between capital formation and insurance
of idiosyncratic liquidity risks. In our model, such trade-off crucially depends on which asset prices
prevail in equilibrium.

In Acharya et al. (2011), Brunnermeier and Sannikov (2014) and Diamond and Rajan (2011)
safe banks do not only hold liquidity to prevent a bank run, but also to strategically take advantage
of fire sales of distressed competitors. In our model, relatively strong risk aversion of consumers
looking for liquidity insurance together with perfect competition among banks prevent banks from
such speculation on fire sales in equilibrium. Similar to Lin et al. (2016) default is a necessary
condition for determinacy of the real outcome in our model. While the focus there is on the role of
default in an economy with money, ours is about the role of default in an economy with banks.

The paper has the following structure. In section 2 we lay out the model. In section 3 we show
that equilibria exist and describe the key dimensions along which equilibria can be differentiated.
In section 4 we look into the role of the sunspot probability and other key parameters for the type
of equilibria that can emerge. In section 5 we discuss some consequences of the instability of the
financial system for the real economy. Section 6 concludes.

2 The model

2.1 Setup

There are three dates t ∈ {0,1,2}, and at each date there is a single good. There is a continuum of
identical consumers with mass one. A consumer is described by her endowment (1,0,0), consumption
set X = R2

+ and random utility function U : X 7→ R. A consumer is either impatient and values
consumption only at date t = 1, or patient and values consumption only at date t = 2. At date t = 1
consumers learn their type, which is private information. Patience among consumers is uncorrelated
and the share of impatient consumers is λ . Therefore,

U (x1,x2) =

{
u(x1) with probability λ ∈]0,1[,
u(x2) with probability 1−λ .

(1)

The elementary utility function u is twice differentiable with u′ > 0, u′′ < 0, and limx→0 u′ (x) = ∞.
The relative risk aversion is supposed to satisfy k(x) =−u′′(x)

u′(x) x > 1.
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There are two constant-returns-to-scale technologies, or assets. A short asset (reserves) has a gross
return of 1 between t and t +1 for t ∈ {0,1}. A long asset (investment) is originated at date t = 0 and
generates R > 1 at t = 2. Before maturity it can be unwound for some positive, but arbitrarily small ε

(physical liquidation value). Consumers cannot make investments, only banks can.
There is a continuum of banks. Each bank supplies financial services to a representative fraction

of consumers. It does so by offering a deposit contract to consumers in exchange for their endowment.
It then puts a share y ∈ [0,1] of these endowments in the short asset as reserves and invests 1− y in
the long asset. At t = 1 banks can trade among each other the investments for reserves at a price P
on an asset market. The deposit contract allows consumers to withdraw d at t = 1. Those who do not
withdraw will equally share the residual value of their bank’s assets at t = 2. Each consumer is free
to choose a bank at t = 0, but cannot do business with more than one bank or change the bank after
that date. Perfect competition among banks ensures that they maximize consumers’ ex ante expected
utility.

There is an extrinsic risk. We assume that the economy is in one of two states s ∈ S = {1,2} at
date t = 1. With probability p ∈]0,1[, the state is s = 1 in which patient consumers contemplate to run
on their bank: a patient consumer will compare what she gets by withdrawing at t = 1 with the payoff
associated with holding on until t = 2, assuming that all other patient consumers will withdraw at
t = 1. If the former is higher, it is best for everyone to withdraw at t = 1. A bank run occurs as a result
of self-fulfilling expectations. The bank has to sell or liquidate all assets, and the proceeds are equally
shared among all its consumers at t = 1. If state s = 2 materializes, a patient consumer assumes that
all other patient consumers will not withdraw at date t = 1, hence there is no such coordination failure
and a bank run does not happen. It is not possible to write state-contingent contracts and financial
markets are incomplete.

2.2 Bank behavior

At date t = 0 banks can either take their chances, or they make provisions to prevent a possible bank
run. Accordingly, banks are either risky or safe. In state s = 1, the run on risky banks forces them to
cease operating at t = 1, while in state s = 2 risky and safe banks live on until date t = 2.

Let Ps be the price of the long asset at date t = 1 in state s and x = (x1,1,x1,2,x2,1,x2,2) denote the
bundle of consumption xts at date t in state s. A bank’s objective then is to maximize expected utility

max
(y,d,x)

λ (pu(x1,1)+(1− p)u(x1,2))+(1−λ )(pu(x2,1)+(1− p)u(x2,2)) (2)

subject to its constraints. These constraints are different for safe and risky banks. For a bank to be
safe, the market value of its assets must at least cover the total value of outstanding deposits as of
t = 1, i.e.

d ≤ y+Ps (1− y) ∀s ∈ S. (3)
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This implies that the bank holds more liquidity than needed to payout impatient consumers. How-
ever, since k (x) > 1, a safe bank does not hold more than needed to deter consumers from running.
Consumers are simply too risk averse to be interested in speculating on fire-sales, as this would only
benefit patient consumers at the expense of impatient consumers.1 Hence

d = y+Ps (1− y) if 1−Ps > 0,
d < y+Ps (1− y) if 1−Ps < 0.

(4)

The resource constraints on consumption with a safe bank are

x1,s ≤ d, (5a)

λd +(1−λ )
x2,s

R/Ps
≤ y+Ps (1− y) . (5b)

The first constraint reflects that a safe bank can always repay its deposits at date t = 1. The second
requires that the present value of total consumption equals the present value of the bank’s assets.

Let superscript S denote the solutions to a safe bank’s problem. As the problem is convex, it is
unique and, if interior, solves the first-order condition(

1
R

λ

1−λ
u′
(

xS
1,1

)
+ p

P1
u′
(

xS
2,1

))
(1−P1)− 1−p

P2
u′
(

xS
2,2

)(
(P2−1)+ λ

1−λ
(P2−P1)

)
= 0, (6)

implying that an incentive constraint xS
1,s ≤ xS

2,s is never binding.
As for a risky bank, there is a run in state s = 1 if the market value of the bank’s assets is not

sufficient to fully pay all depositors
y+P1(1− y)≤ d. (7)

Two remarks are due. First, in equilibrium condition (7) will always hold with strict inequality. This
is because otherwise a safe bank strictly dominates a risky bank. Second, a risky bank cannot fail in
both states. Otherwise the marginal rate of substitution between early and late consumption would
be 1, regardless in which state s the economy is, while the ex-ante marginal rate of transformation is
R−1. This cannot be optimal either.

1See Appendix A.
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The resource constraints on consumption with a risky bank read

x1,s ≤

{
y+P1(1− y) if s = 1,
d if s = 2,

(8a)

x2,s ≤

 y+P1(1− y) if s = 1,
R
P2

y+P2(1− y)−λd
1−λ

if s = 2.
(8b)

The first lines in these budget constraints reflect that in a bank run everyone gets a pro-rata share of
the bank’s liquidation value. The second lines state that impatient consumers get what the deposit
contract entitles them to, while patient consumers share the remainder of the bank’s revenue at t = 2.

Let superscript R denote the solution to a risky bank’s problem. As the problem is convex, the
solution is unique. If it is interior, it solves the first-order conditions

u′
(
xR

1,2
)

u′
(

xR
2,2

) − R
P2

= 0, (9a)

u′
(
xR

1,1
)

u′
(

xR
2,2

) − 1− p
p

P2−1
1−P1

R
P2

= 0, (9b)

implying that an incentive constraint xR
1,s ≤ xR

2,s is never binding.
At date t = 1, banks trade investments for reserves. Risky banks either liquidate or sell everything

in the sunspot state, otherwise they sell or buy provided the payments to their impatient consumers
can be made. A safe bank holds reserves in (weak) excess of what it actually owes to depositors,
regardless in which state the economy is. Liquidity demand qD of a single risky bank (supply of
investments) and liquidity supply qS of a single safe bank (demand for investments) are

qD
s =

{
P1
(
1− yR

)
if s = 1,(

λdR− yR
)

if s = 2,
(10a)

qS = yS −λ

(
yS +P1

(
1− yS

))
. (10b)

Let ρ be the share of consumers who have put their endowments in risky banks, or the share of risky
banks for short. Then,

QD
s = ρqD

s , (11a)

QS = (1−ρ)qS, (11b)
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denote aggregate liquidity demand and aggregate liquidity supply, respectively. The possibility of
coordination failures among consumers implies that, for a bank to be safe, it has to hold more short
assets relative to what it can promise to impatient consumers. Everything else equal, this puts safe
banks at a greater disadvantage than in Allen and Gale (2004a).

3 Equilibrium

It is convenient to further simplify notation. First, a consumption plan for a consumer who deposits
her savings with a bank of type τ ∈ {S ,R} is a consumption bundle and a bank portfolio (xτ ,dτ ,yτ)

satisfying the constraints (3), (5a) and (5b), or (7), (8a) and (8b), respectively. Second, let P= (P1,P2).
Then, V τ (P) denotes the indirect utility offered to consumers by a bank of type τ . Finally, the full-
information first-best is characterized by reserve holdings y∗ defined by

u′ (y∗/λ )

u′
(

R(1−y∗)
1−λ

) = R. (12)

We can now define our equilibrium concept.

Definition 1 An equilibrium is a set of consumption plans, asset prices and the share of risky banks(
(yS ,dS ,xS ),(yR ,dR ,xR),(P,ρ)

)
with the following properties:

• Banks maximize expected utility: (yS ,dS ,xS ) is a solution to the consumer problem for safe
banks, and (yR ,dR ,xR) is a solution to the consumer problem for risky banks.

• Markets clear:

ρP1
(
1− yR

)
+(1−ρ)

(
λ
(
yS +P1

(
1− yS

))
− yS

)
= 0 if s = 1,

ρ
(
λdR− yR

)
+(1−ρ)

(
λ
(
yS +P1

(
1− yS

))
− yS

)
= 0 if s = 2.

• Consumers are not better off by going to another operating bank:

V S (P) = V R (P) if ρ ∈]0,1[,
V S (P) ≥ V R (P) if ρ = 0,
V S (P) ≤ V R (P) if ρ = 1.

3.1 Existence

We begin with the fundamental question of the existence of equilibria.
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Theorem 1 There is an equilibrium.

Proof: For the functions M,N : R++→R++ defined by M(P) = max{R/P,1} and N(P) = max{P,ε}
consider the consumer problem

max
(y,d,x)

λ (pu(x1,1)+(1− p)u(x1,2))+(1−λ )(pu(x2,1)+(1− p)u(x2,2))

s.t.



x1,1 ≤ d

x1,2 ≤ d,

x2,1 ≤ M(P1)(y+N(P1)(1− y)−λd)

x2,2 ≤ M(P2)(y+N(P2)(1− y)−λd)


for

y+N(P1)(1− y) ≥ d

y+N(P2)(1− y) ≥ λd,

x1,1 ≤ y+N(P1)(1− y)

x1,2 ≤ d,

x2,1 ≤ y+N(P1)(1− y)

x2,2 ≤ M(P2)(y+N(P2)(1− y)−λd)


for

y+N(P1)(1− y) < d

y+N(P2)(1− y) ≥ λd.

y ∈ [0,1]

For all (P1,P2) ∈ R2
++ there is a solution because the set of alternatives is compact. According to

Berge’s maximum theorem the solution correspondence F : R2
++→ [0,1]×R+×R4

+ is upper hemi-
continuous because expected utility is a continuous function and the set of alternatives is a continuous
correspondence.

Let the correspondence G : R2
++→R2 be defined by: in case (y,d,x) ∈ F(P1,P2) satisfies the first

four budget constraints,

Gs(P1,P2) =



y+ ε(1− y)−λd
Ps

for Ps < ε ,[
y+Ps(1− y)−λd

Ps
,
y−λd

Ps

]
for Ps = ε ,

y−λd
Ps

for ε < Ps < R,[
y−λd

Ps
,−(1− y)

]
for Ps = R,

−(1− y) for Ps > R,
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for both s; or, in case (y,d,x) satisfies the second four budget constraints,

G1(P1,P2) =


0 for P1 < ε ,

[−(1− y),1− y] for P1 = ε ,

−(1− y) for P1 > ε ,

and G2(P1,P2) as in case (y,d,x) satisfies the first four budget constraints. Then G is upper hemi-
continuous.

For (P1,P2) ∈ R2
++ and (y,d,x) ∈ F(P1,P2), if Ps < ε and (z1,z2) ∈ G(P1,P2), then zs ≥ 0. For

(P1,P2) ∈ R2
++ and (y,d,x) ∈ F(P1,P2), if Ps > R and (z1,z2) ∈ G(P1,P2), then zs ≤ 0. Therefore

prices are bounded from below by ε − δ and from above by R+ δ for some δ ∈]0,ε[, (P1,P2) ∈
[ε−δ ,R+δ ]2.

For A⊂R2 being the convex hull of the range of G with prices restricted to the set [ε−δ ,R+δ ]2,

A = co{(z1,z2) ∈ R2 | ∃(P1,P2) ∈ [ε−δ ,R+δ ]2 : (z1,z2) ∈ G(P1,P2)}

let the correspondence H : A→ [ε−δ ,R+δ ]2 be defined by

H(z1,z2) = {(P1,P2) ∈ [ε−δ ,R+δ ] | ∀(P′1,P′2) ∈ [ε−δ ,R+δ ] : P1z1 +P2z2 ≥ P′1z1 +P′2z2 }.

Then H is upper hemi-continuous.
The correspondence (coG,H) : [δ ,R+ δ ]2×A→ [δ ,R+ δ ]2×A has a fixed point according to

Kakutani’s fixed point theorem, because [ε − δ ,R+ δ ]2×A is convex and compact and (coG,H) is
convex valued and upper hemi-continuous. Suppose (P1,P2,z1,z2) ∈ [ε − δ ,R+ δ ]2×A is a fixed
point, so (z1,z2) ∈ coG(P1,P2) and (P1,P2) ∈ H(z1,z2). Suppose zs 6= 0, then Hs(z1,z2) = ε − δ in
case zs < 0 and Hs(z1,z2) = R+ δ in case zs > 0. Suppose Ps = ε − δ , then either zs = 0 or zs > 0
contradicting Ps = ε−δ , so zs = 0. If Ps = R+δ , then either zs = 0 or zs < 0 contradicting P1 = R+δ ,
so zs = 0. Therefore zs = 0 for both s.

For every (z1,z2) ∈ coG(P1,P2) there are at most three points (zi
1,zi

2)i with (zi
1,zi

2) ∈ G(P1,P2)

for every i and at most three weights (wi)i with wi > 0 for every i and ∑i wi = 1 such that (z1,z2) =

∑i wi(zi
1,zi

2) according to Caratheodory’s theorem. Hence (P1,P2,z1,z2) is an equilibrium. �

An equilibrium always exist, although solving for an equilibrium is difficult. However, we can say
something about equilibrium asset prices and about the structure of the banking sector. As regards
asset prices, one characteristic is that there cannot be arbitrage opportunities. At date t = 0 banks have
access to two assets with identical costs: the long asset with values (P1,P2) and the short asset with
values (1,1), both at date t = 1. The assets are arbitrage free if and only if P1 < 1 < P2, P2 < 1 < P1

or P1 = P2 = 1. If P1,P2 ≥ 1 with P1 +P2 > 2, then all banks would solely invest in the long asset.
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However consumers are better off with a mix of long and short assets. If P1,P2 ≤ 1 with P1 +P2 < 2,
then all banks would solely invest in the short asset. Consumers can do so on their own without using
banks, hence banks have a mix of long and short assets. Finally P1,P2 ≤ R because otherwise all
banks would sell all their long assets in the state s with Ps > R and nobody would be willing to buy the
long asset. In addition to these no-arbitrage conditions, prices must satisfy P1 ≤ P2. This is because
risky banks sell all their long assets in state s = 1 and (weakly) fewer assets in state s = 2 whereas the
supply of liquidity from safe banks is identical in both states.

As regards the structure of the banking sector, there are potentially three types of equilibria. There
may exist only risky banks (ρ = 1) or only safe banks (ρ = 0) or a mix of safe and risky banks
(ρ ∈]0,1[). Accordingly, to characterize any equilibrium, three conditions need to be analyzed. The
first condition refers to the state-independence of liquidity demand, which is necessary in any equi-
librium with ρ > 0 because liquidity supply is state-independent and so has to be its demand in any
equilibrium with risky banks. The second condition refers to zero liquidity supply, which is necessary
in any equilibrium with ρ = 0, for there will be no liquidity demand. The third is about a consumer’s
choice between banks of different types.

3.2 State-independent liquidity demand

State-independence of liquidity demand, i.e. qD
1 = qD

2 , requires dR =
(
yR +P1(1− yR)

)
/λ . To derive

the feasible pairs of prices P that induce risky banks to find it optimal to set yR and dR such that
liquidity demand is state independent, we define a correspondence f such that for P1 ∈ [ε ,1]

f (P1)=


{
(yR ,P2) ∈ {0}× [1,R]

∣∣(yR ,dR
)

satisfy (9a) and dR = P1/λ
}

,{
(yR ,P2) ∈]0,1]× [1,R]

∣∣(yR ,dR
)

satisfy (9a), (9b) and dR =
(
yR +P1(1− yR)

)
/λ
}

.
(13)

If f (P1) = /0, then P1 is incompatible with state-independent liquidity demand. For f (P1) 6= /0,
let (yR ,P2) denote a solution to Equation (13) such that (yR ,dR) is a solution to a risky bank’s
optimization problem and liquidity demand is state independent provided yR = yR and dR =(
P1(1−yR)+yR

)
/λ . In principle, there can be many solutions for a given P1. For any of them,

Equation (13) defines P2 as an implicit function of P1 in some neighborhood of (yR ,P2) according to
the general implicit function theorem. Let kts = k(xR

t,s) denote the relative risk aversion at xR
t,s. Then,
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for each solution this implicit function satisfies

dP2

dP1
=



k22 +
(

P2
P1
−1
)

k11

k22 +
(

P2
P1
−1
) P2

P1
for yR = 0,

−
(k11− k12)k22

P2−1
P2−P1

+ k12 + k22
yR+P1(1−yR)
(1−P1)(1−yR)

(k11− k12)k22
P1

P2−P1
+ k12

1
P2−1 + k22

yR+P1(1−yR)
(1−P1)(1−yR)

P2
P2−1 + k11

P2

1−P1
for yR > 0.

(14)

Our first observation is about some characteristics of the relation between prices provided liquidity
demand is state-independent.

Lemma 1 Assume relative risk aversion is non-increasing. Provided f (P1) 6= /0, state-independent
liquidity demand implies that the asset price in state s = 2, P2, is well-defined by the asset price in
state s = 1, P1. For yR > 0, P2 is monotonically increasing in P1. For yR = 0, P2 is monotonically
decreasing in P1.

Proof: Concavity of u together with the budget constraints (8a) and (8b) imply that the left side in (9a)
is a continuous, monotone and decreasing function of yR and continuous, monotone and increasing
in P2. Hence, there is at most one (yR ,P2) satisfying (13), which thus defines a bijective function
φ1 : [φ−1

1 (1),min{1,λR}]× [1,min{R,φ1(1)}] with dφ1(P1)/dP1 > 0 such that for P2 = φ1(P1) we
have qD

1 = qD
2 and yR = 0.

For any P1, Equation (9a) defines P2 as a monotone and increasing function of yR . Then, a
sufficient condition that there is at most one (yR ,P2) satisfying (13) and yR > 0 is that the left side in
(9b) is strictly monotone in yR while taking into account the relation between yR and P2 according to
(9a). Let

Φ1 :=
(

k12
k22

1
P1
+
(

yR

1−yR +P1

)
1

1−P1

P2
P1
+ k11

k22

P2−1
P1

)
P2−P1
P2−1 ,

Φ2 :=
(

k12
k22

+
(

yR

1−yR +P1

)
1

1−P1

)
P2−P1
P2−1 .

This monotonicity holds if for all P1 either Φ1 > k12− k11 or Φ1 < k12− k11. The sign of dP2/dP1 is
positive if and only if Φ1 > k12− k11 > Φ2. Hence, with non-increasing risk aversion, i.e. k11 ≥ k12,
Equation (13) defines a bijective function φ2 : [max{ε ,φ−1

2 (R)},min{φ−1
1 (1),φ−1

2 (1)}]× [1,R] with
dφ2(P1)/dP1 < 0 such that for P2 = φ2(P1) we have qD

1 = qD
2 and yR > 0. �

The assumption that relative risk aversion is non-increasing eliminates possibly multiple solutions
to Equation (13) and renders the monotonicity of the relation between asset prices in the two states
well-defined. Non-increasing risk aversion is not necessary for many of our results though. For
example, the existence of an equilibrium is as independent from this assumption as is the feasibility
of state-independent liquidity demand according to (13). Yet, it has a straightforward intuition which
makes it a reasonable case to look at. The possibility of a bank run not only adversely affects the

12



expected present value of total consumption. It also creates additional volatility in consumption for
both, patient and impatient consumers. For decreasing relative risk aversion, this risk is more harmful
to impatient consumers. To see this, consider the solutions (yR ,P2) to (13) for yR > 0. Combining
(9a) and (9b) implies that these solutions also satisfy

u′
(
yR +P1(1− y)

)
u′
(

yR+P1(1−y)
λ

) − 1− p
p

P2−1
1−P1

= 0. (15)

For a higher sunspot probability p, it is optimal for consumers that the bank holds more reserves yR if
and only if an increase in yR lowers the marginal rate of substitution between consumption in the bank
run state and consumption of impatient consumers in the state without bank run. For given prices, a
consumer then asks for more consumption in the bank run state and is willing to forfeit some of the
liquidity insurance the bank offers when there is no bank run. This is equivalent to saying that risk
aversion is decreasing k11 > k12, which is a necessary and sufficient condition for the marginal rate of
substitution to be decreasing in yR .

Note that non-increasing relative risk aversion is a common assumption made in models of bank
runs (e.g. Fecht, 2004) or in macro models with banks (e.g. Gertler and Kiyotaki, 2015) where risk
aversion is often even constant.

3.3 Zero liquidity supply

In any equilibrium without risky banks there is no liquidity demand. Hence, qS = 0 must hold
for ρ = 0. A necessary and sufficient condition thus is yS = λP1/(λP1 +1−λ ), implying
dS = P1/(λP1 +1−λ ). A safe bank will set these if and only if prices are such that yS =

λP1/(λP1 +1−λ ) and dS = P1/(λP1 +1−λ ) are a solution to its first-order condition (6), i.e.
if

(1−P1)
u′ (P1/(λP1 +1−λ ))

u′ (R/(λP1 +1−λ ))

−R
(

1−λ

λ

(
(1− p)

(
1− 1

P2

)
− p

(
1
P1
−1
))

+(1− p)
(

1− P1
P2

))
= 0.

(16)

Equation (16) then defines a differentiable function h such that for all P2 = h(P1) liquidity supply is
zero. The properties of this function include h′(P1) < 0, h(1) = 1, and h−1(R) ∈]0,1[. Moreover,
qS > 0 for all P2 < h(P1) and qS < 0 for all P2 > h(P1). To understand this note that the budget
constraints (5a) and (5b) imply for yS = λP1/(λP1 +1−λ ) that dxS

1,s/dP2 = dxS
2,s/dP2 = 0 for both

s. Note also that the first-order condition (6) implicitly defines yS as a function of P2 for any given
P1. Evaluated at yS = λP1/(λP1 +1−λ ), this function satisfies dyS /dP2 < 0. Since for every P1

there is a unique P2 such that qS = 0, we conclude for all P2 < h(P1) that yS > λP1/(λP1 +1−λ )

and thus qS > 0 (and vice versa).
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3.4 Choice between risky and safe banks

Our third step is to identify which bank is the best choice for consumers. In equilibria in which only
safe banks operate, the expected utility they offer to consumers has to be weakly greater than the one
offered by risky banks. Similarly, in equilibria with only risky banks these banks have to offer weakly
better services to consumers than safe banks. In equilibria with both, safe and risky banks offering
their services, all banks have to offer the same expected utility to consumers.

According to the Envelope theorem, indirect utilities V R(P) and V S (P) are characterized by

dV R (P)
dP2

= (1− p)u′
(

xR
2,2

) R
P2

qD
2

P2
∈

{
R++ if qD

2 > 0,
{0} if qD

2 = 0,
(17a)

dV S (P)
dP2

=−(1− p)u′
(

xS
2,2

) R
P2

qS

P2
∈


R− if qS > 0,
{0} if qS = 0,
R++ if qS < 0,

(17b)

dV R (P)
dP1

= p(1− yR)u′
(

yR +P1(1− yR)
)
> 0. (17c)

The sign of dV S (P)/dP1 is not clear.
Let g be a correspondence such that for P1 ∈ [ε ,1]

g(P1) =
{

P2 ∈ [1,R]
∣∣∣V R(P)−V S (P) = 0

}
. (18)

Provided qs ≥ 0 and g(P1) 6= /0, the above characteristics of the indirect utilities thus imply that the
correspondence g is an injective function and a consumer strictly prefers a risky bank over a safe bank
if and only if P2 > g(P1).

4 Properties of equilibria

In this section we look into the role of the sunspot probability and other key parameters for the type
of equilibria that can emerge. We start with some specific examples to illustrate the nature of the
different types of equilibria.

4.1 Examples

In the following examples consumers have utility u(x) =−x−1.
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Example 1 For R = 2.5, λ = 0.4 and p = 0.15 there are exactly two types of equilibria.

1. safe and risky banks

P1 = 0.005137 P2 = 2.097275
qd

1 = 0.002041 qd
2 = 0.002041

qs = 0.506995 ρ = 0.995991
V R = − 0.781776 V S = − 0.781776

2. safe banks only

P1 ≥ 0.915570 P2 = 0.6+0.4P1

1− 1
0.85

1−P1
P1

(
1

P1
+0.09

)
≤ 1.108388

qs = 0 ρ = 0
V R ≤ − 0.654027 V S ≥ − 0.654027

End of example

This example provides several interesting insights. First, equilibria can exist in which safe banks
operate alongside risky banks and asset prices are volatile. Second, equilibria can exist in which
only safe banks operate while asset prices are volatile. The third insight is that an economy can
have multiple equilibria which can be ranked according to welfare. In the present case, the second
equilibrium with only safe banks makes consumers strictly better off than the first equilibrium in
which risky and safe banks coexist. Finally, there can be indeterminacy in that equilibrium asset
prices and hence consumption bundles are not well defined.

Example 2 For R = 5, λ = 0.7 and p = 0.17 there is only one equilibrium with safe and risky banks.

P1 = 0.306249 P2 = 1.289987
qs = 0.300000 ρ = 0.836239
V R = − 0.767365 V S = − 0.767365

End of example

This second example shows that there may not always be multiple equilibria and that the only
equilibrium can be one in which safe banks operate along with risky banks and where asset prices are
determinate.
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Example 3 For R = 5, λ = 0.4 and p = 0.02 there is exactly one equilibrium.

P1 = ε P2 = 1.127551
qd

1 = 0 qd
2 = 0

ρ = 1
V R = − 0.470743 V S = − 0.532600

End of example

In this third example the equilibrium is unique. Only risky banks exist and, when a bank run
occurs, the asset price drops to or below the liquidation value.

Example 4 For R = 5, λ = 0.4 and p = 0.14 there are exactly two types of equilibria.

1. risky banks only

P1 = ε P2 = 2.017442
qd

1 = 0 qd
2 = 0

ρ = 1
V R = − 0.601734 V S = − 0.606790

2. safe banks only

P1 ≥ 0.992116 P2 = 0.6+0.4P1

1− 1
0.14

1−P1
P1

(
2

P1
+0.084

)
≤ 1.0163573

qs = 0 ρ = 0
V R ≤ − 0.521529 V S ≥ − 0.521529

End of example

This final example offers two additional insights. First, there are possibly equilibria in which only
risky banks operate. Second, while the equilibrium with safe banks is indeterminate, the co-existing
equilibrium with risky banks is not.

4.2 Financial instability

The financial system serves to facilitate productive investments and to provide liquidity insurance for
consumers. It does so through banks and their interaction on asset markets. The structure of the
financial system is endogenous. One possible equilibrium structure is when all banks occasionally
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fail simultaneously and at the same time the asset market crashes (Examples 3 and 4). Another one is
when no banks fail and asset prices are the same across states (Examples 1 and 3).

Definition 2 Suppose
(
(yS ,dS ,xS ),(yR ,dR ,xR),(P,ρ)

)
is an equilibrium. Then, (P,ρ) is a finan-

cial system. It is an unstable financial system if P1 = ε , P2 > 1 and ρ = 1 and a stable financial
system if P1 = P2 = 1 and ρ = 0.

To understand unstable financial systems and the circumstances in which they may exist, we start
with the following observation.

Lemma 2 Suppose
(
(yS ,dS ,xS ),(yR ,dR ,xR),(P,ρ)

)
is an equilibrium and let

p̂ :=
R−1

R−1+u′
(

λR
λR+1−λ

)
/u′
(

R
λR+1−λ

) .

Then the financial system cannot be unstable if p > p̂.

Proof: ρ = 1 implies QS = 0. Accordingly, for equilibria with ρ = 1 it requires λdR − yR = 0 and
either 1− yR = 0 or P1 ≤ ε . We can rule out 1− yR = 0 because state-independence of liquidity
demand requires yR to solve

u′
(

yR+P1(1−yR)
λ

)
u′
(

R
P2

P2−P1
1−λ

(1− yR)
) − R

P2
= 0,

and concavity of u implies an upper bound on yR given by yR ≤ λR/(λR+1−λ ) < 1. Hence, an
equilibrium exists only if P1 ≤ ε and f (ε) 6= /0, i.e. there is some (yR ,P2) ∈ [0,λR/(λR+1−λ )]×
[1,R] satisfying

u′
(
yR/λ

)
u′
(

R(1−yR)
1−λ

) =
R
P2

,

u′
(
yR
)

u′
(

R(1−yR)
1−λ

) =
R
P2

1− p
p

(P2−1) .

Let Y1 be the solution to the first equation for a given P2. Then, limP2→1Y1 = y∗, limP2→RY1 =

λR/(λR+(1−λ )) and dY1/dP2 > 0. Let Y2 be the solution to the second equation for a given
P2. Then, limP2→1Y2 = 1, limP2→RY2 = ỹ ∈ (0,1) and dY2/dP2 < 0 where ỹ is implicitly defined by

u′ (ỹ)

u′
(

R(1−ỹ)
1−λ

) =
1− p

p
(R−1) .
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Since y∗ < 1, there is no f (ε) ∈ [0,λR/(λR+1−λ )]× [1,R] if

u′
(

λR
λR+(1−λ )

)
u′
(

R
λR+(1−λ )

) >
1− p

p
(R−1) ,

or, equivalently, if p > p̂. �

A necessary condition for unstable financial systems to exist is that liquidity demand is zero in
both states. There is no liquidity demand in the sunspot state if and only if the asset price is not larger
than the physical liquidation value of assets. Liquidity demand in the no-sunspot state is zero only if
the total payout to impatient consumers is just equal to the reserve holdings of the risky bank. For high
levels of reserves, and thus high payouts to impatient consumers, the budget constraint implies that
the payout to patient consumers will be low. The marginal rate of substitution between consumption
when patient and when impatient would be lower than the rate of return on the long asset as of date 1
unless the price of the long asset is high. This is because a high asset price means a high consumption
for patient consumers and a low rate of return on holding the long asset between date 1 and date 2.
Since the price of the long asset is bounded above by R, the return on the long asset has a lower bound
and consumption when patient has an upper bound. Hence, there is an upper bound on the reserve
holdings above which it is better for consumers to have some payout in excess of the bank’s reserves
when becoming impatient. Liquidity demand would then no longer be zero in the no-sunspot state.
Since optimal reserves are the larger the higher is the sunspot probability, they are sufficiently small
to allow for state-independent liquidity demand if and only if the sunspot probability is below some
threshold p̂.

The upper bound p̂ on the sunspot probability is strictly smaller than (R−1)/R < 1 and depends
on the characteristics of the economy. It is the lower the smaller the share of early consumers is.
Provided liquidity demand is zero, fewer impatient consumers implies that the maximum payoff to
consumers in the state without a bank run is larger while the maximum payoff in case of a bank
run is smaller. Consumers will find this consumption profile efficient only if they are less likely to
experience a bank run. The effects of the return on the long asset R on p̂ are generally not clear-cut,
for there are two effects possibly working in opposite directions. On the one hand, a larger R eases
the upper bound on P2. This allows patient consumers to get more for any given reserve holdings,
and in order to rebalance their optimal consumption profile consumers want to consume more when
impatient too. Banks can offer this even without resorting to the asset market in the no-sunspot state
by holding more reserves. Hence, the sunspot probability which determines optimal reserve holdings
can be higher. On the other hand, a larger R also changes the optimum consumption profile for
consumers in case of a run compared to what they get as late consumers in case there is no run.
If risk aversion is non-increasing, however, increasing reserves according to the first effect is more
than enough to re-balance the marginal utilities across those states. The threshold for the sunspot
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probability then clearly increases. Note, if u exhibits constant relative risk aversion with k(x) = K,
we have p̂ = (R−1)/

(
R−1+λ−K) with d p̂/dR > 0 and d p̂/dK < 0.

Theorem 2 Assume utility is bounded above. There exists a p̄ > 0 such for all p < p̄ an unstable
financial system is an equilibrium. Such equilibrium is locally isolated. Welfare approaches the full-
information first-best if the sunspot probability converges to zero.

Proof: A necessary condition for V R (P)≥V S (P) provided P1 ≤ ε and P2 = φ
−1
2 (ε) is lim

x→∞
u(x)−1 >

0, else safe banks always offer higher expected utility than risky banks at these prices. Note that

dV R(P)
d p

=
dV R(P)

dP2

dP2

d p
+

dV R(P)
dyR

dyR

d p
+u(yR)−

(
λu
(

yR

λ

)
+(1−λ )u

(
R(1−yR

1−λ

))
< 0,

because dV R(P)/dP2 = 0 for qD
2 = 0 and dV R(P)/dy = 0 for y = yR , and because the proper-

ties of u imply u(yR) ≤ u(λR/(λR+ 1− λ )) and λu(yRλ−1) + (1− λ )u(R(1− yR)/(1− λ )) ≥
u(R(λR+ 1− λ )) since y∗ ≤ yR ≤ λR/(λR+ 1− λ ). Moreover, lim

p→0
V R(P) = λu(y∗/λ ) + (1−

λ )u(R(1− y∗)/(1−λ )). While the effects of p on V S (P) are not clear, V S (P)< λu(y∗/λ )+(1−
λ )u(R(1− y∗)/(1−λ )) for all p. Therefore, by the intermediate value theorem there is a p̄ such that
V R(P)>V S (P) for p < p̄ provided lim

x→∞
u(x)−1 > 0. The equilibrium is locally isolated because for

p≤ p̄ there is a unique solution to (13) given by

pu′
(
yR
)
− (1− p)

(
u′
(
yR/λ

)
−Ru′

(
R(1−yR)

1−λ

))
= 0,

Ru′
(

R(1−yR)
1−λ

)
u′
(
yR/λ

) = P2.

�

Unstable financial systems can exist provided coordination failures among consumers are possi-
ble. Without coordination failures among consumers, this cannot happen in limit economies where
fundamental risks converge to zero (Allen and Gale, 2004a). All banks being risky in equilibrium,
however, necessarily goes along with a concurrence of bank runs and a total devaluation of assets
(up to physical liquidation). The reason is that all assets will be put up for sale simultaneously while
there is no liquidity in the market. This can only be an equilibrium if the prospect of an (almost)
unlimited return cannot induce some banks to hold sufficient reserves to fend off a bank run caused
by coordination failures and to buy assets from other banks at fire sale prices.

For this to happen, one necessary condition is that utility is bounded above. Otherwise the prospect
of (almost) unlimited returns, even with only slim chances, would make consumers with a safe bank
strictly better off than with a risky bank. Utility being bounded above holds for many risk-preferences
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with relative risk aversion greater than one, particularly for those with non-increasing relative risk
aversion. The other necessary condition is that the sunspot probability is sufficiently close to zero.
Then liquidity demand of risky banks is zero in both states and the prospect of (almost) unlimited
returns in the sunspot state does not sufficiently compensate consumers for the efficiency loss asso-
ciated with the comparatively large reserves a safe bank would have to hold in order to avoid a bank
run.

When a financial system is unstable, the real outcome is well defined because the equilibrium
is locally isolated. If the sunspot probability approaches zero, the expected utility converges to the
full-information first-best as yR approaches y∗. The equilibrium price P1 is always (weakly) below ε

and with the sunspot probability approaching zero, the equilibrium price P2 converges to one. In that
sense, an equilibrium without fundamental risk and in which banks only fail for fundamental reasons
(as the one considered in Allen and Gale, 2004a) forms the limit equilibrium in a world without
fundamental risk but with bank runs caused by coordination failures. However, the possibility of
coordination failures among depositors also eliminates the indeterminacy regarding the asset prices
that exists if such failures can be rule out.

4.3 Financial stability

Our next result is about the existence and properties of stable financial systems.

Theorem 3 There exists a p̌ < 1 such that for all p > p̌ a stable financial system is an equilibrium.
Welfare with a stable financial system is always strictly smaller than in the full-information first-best
world.

Proof: ρ = 0 requires qS = 0. Absence of asset price volatility requires P1 = P2 = 1. For safe banks,
the budget constraints (5a) and (5b) then imply dS = 1, xS

2,1 = R and xS
2,2 = R. For risky banks, dR

solves
u′(dR) = Ru′

(
R1−λdR

1−λ

)
,

implying dR ∈
[
1,λ−1) and R1−λdR

1−λ
∈ (1,R] for k(x)> 1. Therefore, xR

1,1 = 1 = xS
1,1, xR

1,2 ≥ 1 = xS
1,2,

xR
2,1 = 1 < R = xS

2,1 and xR
2,2 ≤ R = xS

2,1. Let

X(p) = (1− p)λu
(

xR
1,2

)
+(1− p)(1−λ )u

(
xR

2,2

)
+ pu(1) ,

and p̌ be a solution to
λu(1)+(1−λ )u(R) = X(p)

Since λu
(
xR

1,2
)
+(1−λ )u

(
xR

2,2
)
> λu(1)+(1−λ )u(R) for k(x)> 1, u(1)< λu(1)+(1−λ )u(R)

and X ′< 0, there is a unique p̌< 1 such that V S (P)≥V R(P) for P= (1,1) if and only if p≥ p̌. Since
k > 1, expected utility satisfies λu(1)+(1−λ )u(R)< λu(y∗/λ )+(1−λ )u(R(1− y∗)/(1−λ )). �
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In a stable financial system, neither do banks go bust nor do asset prices fluctuate as a result of
sunspots. Asset prices being equal across states have two major implications. First, an individual safe
bank’s reserves are indeterminate, as structuring its portfolio at t = 0 is as good as structuring it at
t = 1. A bank can simply buy and sell the long asset at t = 1 as a unit of reserves is as much worth
as a unit of the long asset at both dates. In aggregate, however, the banking sector makes provisions
against bank runs driven by coordination failures. There are just sufficient reserves in the banking
sector to allow all banks paying out all depositors at t = 1, i.e. λdS = yS . Second, while there may
be a trade of assets at t = 1, it does not affect the consumption for impatient or patient consumers.
The market value of a bank’s assets at t = 1 is always one regardless how it is structured. Hence,
impatient consumers always get one unit of consumption and patient consumers always get R units.

For a risky bank, the individual reserve holdings would also be indeterminate for P1 = P2 = 1.
However, it would provide a better risk sharing in case there is no bank run by offering higher con-
sumption to impatient consumers and lower consumption to patient consumers. The cost is that,
relative to what a safe bank offers, all consumers get less in case of a bank run. Hence, if the sunspot
probability is sufficiently large, safe banks outperform risky banks.

It is useful to further classify the banking sector of a financial system.

Definition 3 A stable banking sector is a financial system with ρ = 0 and a mixed banking sector is
a financial system with ρ ∈]0,1[.

Theorem 4 Suppose the equilibrium
(
(yS ,dS ,xS ),(yR ,dR ,xR),(P,ρ)

)
is a stable financial sys-

tem. If V S (P)>V R (P), there is a stable banking sector such that

• asset prices and consumption are indeterminate;

• asset prices are strictly bounded away from the physical liquidation value.

Proof: In any equilibrium with safe banks only, P2 = h(P1) must hold. Continuity of h implies there
exists a continuum of equilibrium prices which support equilibria with stable banking sectors provided
V S (1,1) > V R(1,1), i.e. if p > p̌. Different asset prices are associated with different consumption
bundles according to Equation (6). Since arbitrage-free equilibrium requires 1≤ P2 ≤ R and because
h−1(R)> 0, P1 is strictly bounded away from ε .

�

If the sunspot probability is sufficiently large, an economy may not necessarily have a stable
financial system despite no bank offering its liquidity service to consumers will ever suffer a bank
run. This is because asset prices may well be volatile, although a total market crash cannot happen.
Just like in Allen and Gale (2004a), asset prices are indeterminate in this equilibrium. However,
the possibility of coordination failures induces safe banks to hold more reserves and the amount of
reserves depends on the extent of the asset price volatility. The more volatile they are, the lower is
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the asset price in the sunspot state and the tighter is the constraint of safe banks. As this induces
safe banks to hold more liquid reserves, asset price volatility has an impact on welfare which is the
stronger the more prices fluctuate in equilibrium. From a welfare perspective, with the banking sector
being stable, consumers could be made better off if policy makers would commit to stabilize asset
prices when they tend to fall below their fundamentals. The anticipation of such interventions could
serve as a coordination device and the economy converges to a stable financial system.

5 Real effects of financial instability

The equilibrium structure of the financial system has consequences for the efficiency of the liquidity
insurance it provides for consumers. The efficiency of the liquidity insurance then influences the deci-
sions of consumers to provide funds to the financial sector. In that sense, the structure of the financial
system matters for the real economy beyond its ability to insure against idiosyncratic liquidity risks
even in the absence of any fundamental risk. In this section we shed some light on these links.

5.1 Financial systems and efficiency of liquidity insurance

We compare consumer welfare in different financial systems for a given set of fundamentals. This
focus on multiple equilibria allows to elicit the role of the instability of the financial system for the
real economy. For the sake of clarity and simplicity we assume from now on that consumers have risk
preferences with constant relative risk aversion.

If there is a mixed banking sector, asset prices have to be volatile but will be bounded away from
their physical liquidation value. Hence, asset prices would not be volatile if and only if P1 = P2 = 1.
However, there would be no liquidity supply for h(1) = 1. Market clearing would then require that
liquidity demand is also zero. However, qD

1 = qD
2 = 0 holds if and only if P2 = φ2(ε). Hence, market

clearing with ρ ∈]0,1[ cannot hold for P2 = P1.
For relative risk aversion being constant, equilibria can be ranked according to the efficiency of

the liquidity insurance the financial sector provides by a simple rule.

Theorem 5 Assume relative risk aversion is constant. Comparing any two financial systems, welfare
is higher in the equilibrium in which the asset price is higher in the sunspot state.

Proof: Provided k(x) is constant, f is a function for all f (P1) 6= /0 (see Lemma 1).
Welfare for ρ ∈]0,1]: For f (P1) = P2, indirect utility is

V R(P1)= pu
(

yR +P1

(
1− yR

))
+(1− p)λu

(
yR+P1(1−ŷ)

λ

)
+(1− p)(1−λ )u

(
R
P2

P2−P1
1−λ

(
1− yR

))
,
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with (yR ,P2) = f (P1). According to the Envelope theorem it follows

dV R(P1)

dP1
=



(
k22

1−P1
+ k11

P1
+ P2−1

1−P1
1
P1

)
(1− p)

(
1− yR

)
(P2−P1)u′

(
xR

2,2
)

k22 +
P2−P1

P1

for yR = 0,

(1− p)
(
1− yR

)(
k12 +

(
k22

(
yR

1−yR +P1

)
1

1−P1
+ k11

)
P2−1
1−P1

)
u′
(
xR

2,2
)

(k11− k12)k22
P1

P2−P1
+ k12

1
P2−1 + k22

(
yR

1−yR +P1

)
1

1−P1

P2
P2−1 + k11

for yR > 0,

with xR
2,2 =

R
P2

P2−P1
1−λ

(1− yR). It is strictly positive for yR = 0. For yR > 0 it is positive if and only if(
k12
k22

1
P1
+
(

yR

1−yR +P1

)
1

1−P1

P2
P1
+ k11

k22

P2−1
P1

)
P2−P1
P2−1 > k12− k11,

which holds for constant k(x). Therefore, the welfare of any equilibrium financial system with ρ ∈
]0,1] is the higher the higher is P1.
Welfare for ρ = 0: For h(P1) = P2, indirect utility is

V S (P1) = λu
(

P1
λP1+1−λ

)
+(1−λ )u

(
R

λP1+1−λ

)
.

Applying the Envelope theorem, taking P2 = h(P1) into account, it follows

dV S (P1)

dP1
= λu′

(
P1

λP1 +1−λ

)
1−λ

(λP1 +1−λ )2 − (1−λ )u′
(

R
λP1 +1−λ

)
λR

(λP1 +1−λ )2 ,

which is positive for all P1 ∈ [h−1(R),1]. This is because u′(1) ≥ Ru′(R) (since k(x) > 1) and
d

dP1
(u′( P1

λP1+1−λ
)−Ru′( R

λP1+1−λ
)) < 0 (since u′′ < 0) together imply u′( P1

λP1+1−λ
) ≥ Ru′( R

λP1+1−λ
).

Therefore, the welfare of any equilibrium financial system with ρ = 0 is the higher the higher is P1.
Conclusion: In any equilibrium, P2 = min{max{φ1(P1),φ2(P2)},h(P1)}. Since dV R(P1)/dP1 > 0

for P2 = φ1(P1) and for P2 = φ2(P1), as well as dV S (P1)/dP1 > 0 for P2 = h(P1), comparing any two
feasible equilibrium financial systems, welfare is higher in the equilibrium in which the asset price is
higher in the sunspot state. �

If there are multiple equilibria, they differ with respect to the asset price in the no-sunspot state.
The higher the asset price, the higher is the welfare the financial system offers for consumers. For
example, if both, a mixed banking sector and a stable banking sector form an equilibrium, the latter
is better for consumers than the former (see Example 1). There will be indeterminacy with a stable
banking sector, but the minimum welfare it offers is still higher. The reason is that the possibility of
a coordination failure among consumers comes along with a substantial asset price drop triggered by
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such a bank run. A similar result holds if an unstable financial system can emerge as well as a stable
banking sector (see Example 4).

5.2 Financial systems and capital formation

In a second step we now analyze the consumers’ decision about how much funds will be provided to
the financial sector to invest on their behalf. Consider a stationary overlapping generations economy
with production. There is labor, capital and a non-perishable consumption good. Time is discrete and
extends from −∞ to +∞. At every even date t a continuum of identical consumers of mass one is
born, who live for two subsequent dates t +1 and t +2. A consumer is described by her consumption
set X ∈ R3

+ and an endowment of labor `= 1 at t which is inelastically supplied. Lifetime utility is

Ω(x0,x1,x2) = ω(x0)+U(x1,x2),

with ω being twice differentiable with ω ′ > 0, ω ′′ < 0 and lim
x→0

ω
′ = ∞, while U(x1,x2) is as in

Equation (1).
There is a continuum of firms of mass one. At even dates t, firms transform capital Kt−2 and labor

Lt into the consumption good at t. Capital fully depreciates either due to physical liquidation at the
interim date t−1 or after completion of the production cycle at t. A firm is described by its constant
returns to scale production function Z : R2

+→R++ with Y = Z(K,L). Z is of Cobb-Douglas type and
there is an externality in production such that each firm’s production function is given by

Y = AK̄1−αKαL1−α ,

with α ∈ (0,1) being the output elasticity of capital, K̄ the aggregate capital stock and A the total
factor productivity. Aggregate production is then given by a standard AK function

Y = AK̄.

Perfect competition among firms ensures that capital and labor are paid according to their marginal
product, i.e. W = (1−α)AK̄ and R = αA. For capital to be more productive than holding reserves it
has to be A > α−1.

At t, in the first stage of her life, a consumer works and receives a wage W , consumes x0 and saves
the remainder s =W − x0. Savings for the second stage of her life, which starts at t +1, can be either
storing consumption goods or holding deposits in banks. Deposit contracts and the bank’s portfolio
choice are as described in section 2.2. Banks can invest in capital K which they rent to firms for the
rental price R. Capital is thus the long asset. Banks can also hold reserves by storing what consumers
have deposited, which is the short asset.
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For the sake of simplicity we assume ω(x) = u(x) =−x−1 for all x. Because relative risk aversion
is constant the portfolio structure of banks and hence the equilibrium asset prices are independent of
the amount consumers put into the bank. A consumer’s welfare then is

Ω(x0,x1,x2) =−
1
x0

+
V (P)

s
,

with V (P) being the indirect utility consumers get when saving one unit using a financial system
as described in section 4. Optimal consumption when young x̄0 and savings s̄ are thus given by
s̄ =W

√
−V (P)/(1+

√
−V (P)) and x̄0 =W/(1+

√
−V (P)).

Steady states are equilibria where capital and production grow at a constant rate. If existent, they
satisfy

Kt

Kt−2
= (1− ȳ)(1−α)A

√
−V (P)

1+
√
−V (P)

, (19)

with ȳ = ρyR +(1− ρ)yS being the aggregate liquidity holdings of the banking sector. Equation
(19) is central for the real effects of financial instability for there are two effects, potentially working
in opposite directions. Consider the case with two equilibria: a stable financial system and a mixed
banking sector (as in Example 1). Zero-liquidity supply in the stable financial system requires yS =

λ which is below the full-information first-best. With a mixed banking sector, aggregate liquidity
holdings can be higher or lower than the full-information first-best. If the asset price in the sunspot
state is close to the physical liquidation value, aggregate reserves are more likely to be above the
full-information first-best (see Lemma 2). Then, of any unit of savings deposited with banks, a larger
share will be used to form capital in the stable financial system. However, the indirect utility with a
stable financial system will also be higher which implies lower savings (see Lemma 5). Hence, the
overall effect of a more stable financial system on capital growth is ambivalent.

Things are different though for a stable banking sector which is associated with indeterminacy.
There, liquidity holdings of safe banks as well as the indirect utility consumers get from investing
one unit in the banking sector are the higher the lower the volatility of asset prices is. Therefore, the
growth rate of capital in a stable financial system is unambiguously lower than with a stable banking
sector but volatile asset prices.

Steady states cannot exist if the unstable financial system is the equilibrium in the second stage.
Suppose the sunspot probability is very small and the indirect utility consumers get in the second
stage is close to the full-information first-best. When bank runs are triggered as a result of coordina-
tion failures among consumers, all capital will be physically liquidated. This liquidation then creates
an externality for future generations who have no capital to work with. Although not explicitly con-
sidered here, one could think of consumers to start working with a rather unproductive technology
that requires only labor. This would then kick-start the economy after a the financial crash and hence
capital starts growing again.
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Note that only unstable financial systems can create such externalities for the following genera-
tions. The reason is that physical liquidation of capital never occurs if there are at least some safe
banks in equilibrium. The capital stock then changes hands rather than being liquidated and the asset
price clears the market. Capital will thus be available for the next generation to work with. This adds
to the findings by Ennis and Keister (2003). There, the only option for banks is to physically liquidate
in a bank run as there is no asset market. Accordingly, every bank run makes bank-financed capital
obsolete. When asset markets exist, this effect is at work only if all banks are risky.

6 Concluding remarks

Simultaneous asset market crashes and bank failures may not only occur in response to a change
in fundamentals. In a banking model with asset markets we have shown that coordination failures
among depositors triggered by sunspots can have similar effects. In equilibrium, risky banks which
expose themselves to such bank runs may well exist even in the absence of fundamental risks. There
are other types of equilibria in which safe banks exist. These banks hold portfolios that take away
the incentives for consumers to coordinate on bank runs. Consumption by at least some patient and
impatient consumers is stochastic if risky banks exist and provides too little liquidity insurance when
safe banks exist. In any case, consumption deviates from the full-information first-best.

The instability of financial systems as they emerge in equilibrium has consequences for the real
economy. These are driven by two effects which possibly work in opposite directions. One is that in
more stable systems savings are more likely to be invested in productive long-term capital formation.
However, the amount consumers save may vary depending on financial system.

For policy makers, the possibility of coordination failures makes it difficult to decide which fi-
nancial system should be considered better. Suppose they focus only on the welfare that consumers
get from the banking sector for given savings. Then among all equilibrium financial systems, those
with a lower drop in asset prices (possibly coinciding with bank runs) tend to be better, at least for
non-increasing relative risk aversion. However, this is not to say that unstable financial are per se bad.
If coordination failures are highly unlikely, the only equilibrium that exists is one in which occasion-
ally all banks go bust and prices of assets fall to or below their physical liquidation value. But these
unstable financial systems almost implement the full-information first-best. The drawback is that they
may create an externality on future generations of consumers.

We have considered a rather limited set of options for consumers to interact with banks. A key
feature in the world financial crisis has been that funds withdrawn from one bank were re-deposited in
another bank. This migration of deposits when banks get into distress is a channel through which the
available aggregate liquidity is distributed in times of systemic crises. As this channel would work
parallel, and possibly interacts with asset markets, the implications of deposit migration on asset
prices and the risk-taking behavior of banks in equilibrium remains to be explored.
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A Supersafe banks

This appendix shows that there can be no supersafe banks if −u′′(x)
u′(x) x > 1. Suppose (3) would never

be binding such that the associated FOC are

u′ (d) = R
(

u′
(

R
P1

y+P1(1−y)−λd
(1−λ )

)
p

P1
+u′

(
R
P2

y+P2(1−y)−λd
(1−λ )

)
1−p
P2

)
,

u′ (c2,1) = −1−p
p

P1
1−P1

1−P2
P2

u′ (c2,2) .

There is a d which maximizes expected utility and satisfies d < y+P1 (1− y) if

u′ (y+P1 (1− y))< p R
P1

u′
(

R
P1
(y+P1 (1− y))

)
+(1− p) R

P2
u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
.

To show that this cannot be, we argue that

R
P1

u′
(

R
P1
(y+P1 (1− y))

)
> u′ (y+P1 (1− y)) , (20)

and
R
P2

u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
> u′ (y+P1 (1− y)) , (21)

cannot be true. Condition (20) cannot hold for −u′′(x)
u′(x) x > 1 since

R
P1

u′
(

R
P1
(y+P1 (1− y))

)
= u′ (y+P1 (1− y))+ 1

y+P1(1−y)

∫ R
P1
(y+P1(1−y))

y+P1(1−y)

[
u′ (x)+ xu′′ (x)

]
dx.

As regards condition (21), consider first the differential equation

u′ (y+P1 (1− y)) = R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )(y+P1(1−y)) u′

(
R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
− 1

y+P1(1−y)

∫ R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

y+P1(1−y)

[
u′ (x)+ xu′′ (x)

]
dx.

Condition (21) would hold if

u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
R
P2

> R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )(y+P1(1−y)) u′

(
R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
− 1

y+P1(1−y)

∫ R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

y+P1(1−y)

[
u′ (x)+ xu′′ (x)

]
dx.

Rearranging terms gives

R
P2

u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)(
(P2−P1)(1−y)

(1−λ )

)
<
∫ R

P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

y+P1(1−y)

[
u′ (x)+ xu′′ (x)

]
dx.

However, this cannot be if −u′′(x)
u′(x) x > 1 because P1 ≤ P2.
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